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Inelastic x-ray scattering �IXS� is now a widely used technique for studying the dynamics of electrons in
condensed matter. We previously posed a solution to the phase problem for IXS �P. Abbamonte et al., Phys.
Rev. Lett. 92, 237401 �2004�� that allows explicit reconstruction of the density propagator of a system. The
propagator represents, physically, the response of the system to an idealized, point perturbation, so provides
direct, real-time images of electron motion with attosecond time resolution and Å-scale spatial resolution. Here
we show that the images generated by our procedure, as it was originally posed, are spatial averages over all
source locations. Within an idealized, atomiclike model, we show that in most cases a simple relationship to the
complete, unaveraged response can still be determined. We illustrate this concept for recent IXS measurements
of single-crystal graphite.
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I. INTRODUCTION

Attoscience is an emerging discipline that exploits re-
markable achievements in high harmonic generation �HHG�
laser technology to study the dynamics of electrons in atoms,
molecules, and condensed matter with subfemtosecond time
resolution.1–4 These advances have been paralleled by
equally remarkable achievements in technology for x-ray ex-
periments, both at the source and the endstation level. In
particular, new approaches to inelastic x-ray scattering �IXS�
provide a kinematic flexibility not previously accessible to
energy-loss scattering techniques.5

We previously showed that if the nonresonant IXS cross
section is sampled over a sufficiently broad range of momen-
tum and energy, it can be inverted to explicitly reconstruct
the density-density propagator of a material �the case of reso-
nant IXS or “RIXS” will be discussed at the end of this
article�. The propagator, physically, represents the density
induced in a medium by an idealized, point perturbation.
Inversion therefore provides direct, real-time images of elec-
tron dynamics, with resolutions exceeding 20 as in time and
1 Å in space.6 We have used this method, for example, to
show that the valence exciton in LiF is a Frenkel exciton.7

This inversion method, as it was originally posed,6 has a
limitation: it makes use of only a subset of the full charge
response of the material. To understand the origin of this
limitation, recall that the �retarded� density propagator of a
system is defined as

��x1,x2,t� = − i/��g��n̂�x1,t�, n̂�x2,0���g���t� , �1�

where �g� represents the ground state and n̂�x , t� is the many-
body density operator

n̂�x,t� = �̂†�x,t��̂�x,t� , �2�

where �̂ is a field operator for the interacting, Fermion sys-
tem. Equation �1� represents the amplitude that a point dis-
turbance in the electron density at location x2 at time t=0
will propagate to point x1 at some later time t, so is a general
measure of electron dynamics.

The two spatial coordinates, x1 and x2, are distinct. That
is, the form of the response depends, in general, on the pre-
cise location of the source, x2 �on top of an atom versus
between atoms, for example�. The Fourier transform of the
propagator is therefore a function of two momenta

� = ��k1,k2,�� . �3�

Unfortunately, in scattering there is only one momentum
transfer, k. IXS experiments do not measure all parts of the
response in Eq. �3� but only its longitudinal �or “diagonal”�
components8

��k,�� = ��k,− k,�� . �4�

This restricts the amount of information available with the
IXS imaging approach. If the system is translationally invari-
ant, this restriction poses no limits on the method. In a ho-
mogeneous system the propagator depends only on the dif-
ference x=x1−x2, i.e.,

��x1,x2,t� = ��x1 − x2,t� � ��x,t� , �5�

its Fourier transform is a function of only one momentum

� = ��k,�� �6�

and IXS can provide a complete parameterization of the den-
sity propagator.

All real systems are made of atoms, however, so are never
truly homogeneous. One can, nonetheless, carry out the in-
version procedure described in Refs. 6 and 7 and construct
detailed images of electron motion. But these images cannot
be complete. Because they are based on a subset of all Fou-
rier components of the response, the images must represent
some kind of average of the complete response. For IXS
inversion to be useful, it is necessary to articulate exactly
what kind of average this is.

In this paper we show that the images produced in an IXS
inversion correspond to the complete response, ��x1 ,x2 , t�,
averaged over all source locations, x2. In a homogeneous
system, in which the response is independent of x2, the im-
ages can be considered complete. Even in an inhomogeneous
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system, however, a simple physical picture is still applicable.
We show, within a simple but illustrative model, that the
overall size of the response scales with the electron density at
the source location, x2. The average will, therefore, be domi-
nated by source points of high electron density. We will show
that, in cases of physical interest, the images will resemble
closely the full response, ��x1 ,x2 , t�, in which x2 coincides
with the peak in the electron density. We discuss this conclu-
sion in the context of some recent IXS studies of single-
crystal graphite.

II. INVERSION OF IXS DATA

We begin by reviewing the mechanics of an IXS inver-
sion. IXS measures the dynamic structure factor S�k ,��, de-
fined as

S�k,�� = 	
i,f

��f �n̂�k��i��2Pi��� − � f + �i� , �7�

where Pi=e−��i /Z is the Boltzmann factor ��=� /kT�. The
Fourier transform of S is a space-time correlation function
for the density.9 This correlation function, while interesting,
is not causal so contains no direct information about dynam-
ics.

S�k ,�� is, however, related to the charge propagator
through the fluctuation-dissipation theorem

S�k,�� =
1

�

1

1 − e−�� Im���k,��� . �8�

The propagator � is a truly causal quantity, so provides direct
information about electron dynamics. Inverting this cross
section, to reconstruct the propagator, requires four steps.
The first is symmetrizing to convert from S to Im���. This is
best done via the relationship6

Im���k,��� = − ��S�k,�� − S�k,− ��� �9�

which does not require exact knowledge of the temperature.
Next, one must analytically continue the data. This can be
done with simple, linear interpolation.6,7 Third, one performs
a sine transform of this imaginary part

��k,t� =
 d� Im���k,���sin �t , �10�

where it is understood that ��k , t� is zero for t	0. Equation
�10� follows directly from the Kramers-Kronig relations and
is the step in the procedure in which the phase is determined
and causality is imposed. Finally, one performs a normal,
Fourier transform of the spatial coordinates to get ��x , t�.
This procedure has been used to image electronic motion in
liquid water,6 to show that the exciton in LiF is a Frenkel
exciton,7 and to study screening processes in graphite and
graphene.10,11

III. IMPLICIT SPATIAL AVERAGING

We now stop to ask the following question: how do we
interpret the output of this procedure for a system that does
not have translational symmetry? If we carry out the proce-

dure described in Sec. II, we will be left with a function of a
single spatial variable, ��x , t�, which looks like the response
of a homogeneous system. How should this function be in-
terpreted?

To answer this question, we must determine an explicit
relationship between this ��x , t� and the complete response
function ��x1 ,x2 , t�. First, we write down the Fourier trans-
form

��x1,x2� =
 dk1dk2

�2��6 ��k1,k2�eik1·x1+ik2·x2, �11�

where the time dependence has been suppressed. Next, we
recognize that if we insert the expression g�k1 ,k2�
= �2��3��k1+k2� into the integrand

��x1,x2� =
 dk1dk2

�2��6 g�k1,k2���k1,k2�eik1·x1+ik2·x2 �12�

Eq. �11� reduces to

��x1 − x2� =
 dk1

�2��3��k1,− k1�eik1·�x1−x2�, �13�

which we readily recognize to be the same as Eqs. �4� and
�5�. This means that one can think of ��x , t� as the full func-
tion ��x1 ,x2� having been Fourier filtered by the function
g�k1 ,k2�.

A more physical interpretation can be achieved by apply-
ing the convolution theorem. The Fourier transform of g is
given by

g�x1,x2� = ��x1 − x2� . �14�

��x� is the Fourier transform of the product
g�k1 ,k2���k1 ,k2�, which means it can be written as the con-
volution integral

��x1 − x2� =
 dx1�dx2�g�x1�,x2����x1 − x1�,x2 − x2�� �15�

=
 dx2���x1 − x2�,x2 − x2�� . �16�

Redefining the origin and writing in terms of x=x1−x2 we
arrive at

��x� =
 dx2���x + x2�,x2�� . �17�

So, the physical meaning of ��x , t� becomes quite clear. It is
simply the complete susceptibility, ��x1 ,x2 , t�, averaged over
all possible source locations, x2. No such average is done in
time, however, so ��x , t� is still a direct probe of electron
dynamics. Further, even in an inhomogeneous system, ��x , t�
provides detailed and direct insight into the dynamics of the
system. To illustrate why, it is useful to examine a specific
case.

IV. ONE ELECTRON IN A PERIODIC POTENTIAL

To illustrate the value of ��x , t� for an inhomogeneous
system, we consider the idealized case of a single electron
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traveling in a one-dimensional periodic array of harmonic
wells

V�x� = 	
n

v�x − na� �18�

where each well is described by

v�x� = k�x2 − r2���r − �x�� �19�

a being the distance between wells and r the radius of each
well, as shown in Fig. 1 �the quantities x and k are now
scalars�. For sufficiently large values of k, the ground state of
an isolated well will be a Gaussian


�x� = �2�� exp − x2/2�2 �20�

with energy �0.
If the wells are weakly coupled the system can be de-

scribed by a tight-binding model with hopping parameter th
�to distinguish it from the time t�. The eigenstates are then
Bloch waves

�k�x� = 	
n


�x − na�eikna �21�

and the energy level �0 will spread into a band with disper-
sion

��k� = 2th�1 − cos�ka�� , �22�

where we have shifted the zero of energy to coincide with
the bottom of the band, i.e., ��0�=0.

We now wish to make an explicit comparison between the
full response, ��x1 ,x2 , t� for this model, and the averaged
response, ��x , t�. These quantities can be readily computed in
one-electron Schrödinger theory but to keep the discussion
general we will take a Green’s function approach. The Fer-
mion field operator for this system is

�̂�x,t� = 	
k

ck�k�x�e−i��k�t, �23�

where ck annihilates an electron with momentum k. Since we
have only one electron, there is no need to specify the spin.
In its ground state, the electron is at rest, i.e.,

�g� = c0
†�0� . �24�

Plugging these definitions into the expression for the propa-
gator, Eq. �1�, we readily find

��x1,x2,t� =
8

�
��0�x1��0�x2��

�� 	
n1,n2


�x2 − n2a�
�x1 − n1a� · fn2−n1
�t� ,

�25�

where

fn�t� = 

0

�/a

dk cos�kna�sin ��k�t . �26�

In general, the integral in Eq. �26� should exclude the value
at k=0, however we may include it since sin ��0�t=0. Note
that fn�t�= f−n�t�.

The propagator, Eq. �25�, consists of two factors, which
can be thought of as propagators for the individual electron
and hole. The first factor

�0�x1��0�x2� �27�

is independent of time and has a strong dependence on x2.
We plot this factor in Fig. 2, where we have chosen �=a /5.
We see that this factor is strongly dependent on x2, its maxi-
mum possible value being reached when x2 resides at the
center of a well, i.e., the peak of the ground-state probability
density.

We now evaluate Eq. �25� and examine the properties of
the full propagator. For this purpose we evaluated fn�t�, out
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FIG. 1. Plot of the periodic array of potential wells described by
Eqs. �18� and �19�. For suitable choice of well depth and spacing,
this system can be described in the tight-binding approximation as a
set of coupled harmonic oscillators.
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FIG. 2. �Color online� Contour plot of the prefactor
�0�x1��0�x2� in Eq. �25�.
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to n=5 �fifth neighbors�, using the value th=1 eV. The re-
sults are shown in Fig. 3. The resulting ��x1 ,x2 , t� is shown
as a contour plot, in Fig. 4, as a function of x1 and t, for the
specific values x2=0 �the source in the center of a well� and
x2=a /2 �source half way between two wells�. In accordance
with the physical meaning of a propagator, at t=0 the system
appears to be struck by an instantaneous charged perturba-
tion, setting up a disturbance in the electron-probability den-
sity. As time progresses the disturbance propagates away
from the source location, dispersing through the lattice in a
manner dictated by the dispersion of the band �Eq. �22��.

When x2=0, the disturbance is symmetric around x1=0
and has a distinct temporal periodicity determined by the
bandwidth. When x2=a /2, on the other hand, the disturbance
is asymmetric and no longer has a clear temporal periodicity.
These two cases are distinctly different, and illustrate how
local field effects, arising from broken translational symme-
try, affect the response properties of an atomiclike system.

Most importantly, in Fig. 4�c� we compare, on a linear
plot, the two quantities ��x1 ,0 , t� and ��x1 ,a /2, t� at a time
t=1000 as. Notice that the x2=0 case is larger than the x2
=a /2 case by a factor of �200. This is partly a result of the
prefactor Eq. �27� and has the physical meaning that the
system responds more strongly if it is “struck” at a region of
higher electron-probability density.

We now consider the averaged quantity, ��x , t�, which
was determined by evaluating Eq. �17�, i.e., by integrating
images like those shown in Figs. 4�a� and 4�b� for x2 values
between −a /2 to a /2. The result is shown in Fig. 5. Remark-
ably, it is visually indistinguishable from Fig. 4�a�.

The reason these two plots look the same is that
��x1 ,x2 , t� is bigger when x2 coincides with the center of a
well. So the average, Eq. �17�, is dominated by its contribu-
tion from x2�0, resulting in a close resemblance to Fig.
4�a�. In other words, the averaged quantity ��x , t�, to a rea-
sonable approximation, can be thought of as the complete

response ��x1 ,x2 , t� for x2 residing at the peak in the electron
probability density.

This illustration was for the extremely simplistic case of
one electron in an array of wells. However the result should
be quite general and apply also to a many-electron system in
the presence of strong interactions. The size of the propaga-
tor is determined by the expectation value of the product of
two many-body operators, n̂�x1 , t� · n̂�x2 ,0�. The upper bound
on this quantity is set by the product of their expectation
values, �n̂�x1 , t�� · �n̂�x2 ,0��. The propagator will therefore al-
ways have a tendency to be larger when x1 and x2 individu-
ally reside in regions of higher electron density. In particular,
collective modes of the density, such as plasmons and
phonons, which are most easily studied with IXS, should
generally have this property.
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FIG. 4. �Color online� �a� Contour plot of ��x1 ,x2 , t� for x2=0,
i.e., for the source located in the center of an “atom”. The distur-
bance created is symmetric around the source point and propagates
at the average group velocity of the band. �b� Same plot, but with
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V. EXAMPLE: SINGLE CRYSTAL GRAPHITE

To illustrate how this concept can be useful for under-
standing experimental data, we briefly consider the real ex-
ample of single-crystal graphite. Graphite is a layered struc-
ture comprising an abab-type stacking of graphene sheets.
The sheets have a honeycomb structure with two distinct C
sites, which are related by a translation combined with a 60°
rotation of the coordinates.

We performed IXS measurements on a commercially ob-
tained single crystal �not highly oriented pyrolytic graphite�
of graphite. The experiments were done at Sector 9 XOR of
the Advanced Photon Source. The details of this experiment
are being published in two separate articles.10,11 In brief,
spectra were taken at medium energy resolution �E
�300 meV� for k vectors spanning the entire basal plane,
allowing a spatially two-dimensional reconstruction of the
translationally averaged propagator ��x ,y , t�, which is shown
in Fig. 6 for a time slice of t=400 as. The image exhibits a
pronounced sixfold symmetry, which is an unsurprising re-
sult of the underlying hexagonal symmetry of the lattice.

Our result from Sec. IV, i.e., that � is largest when the
source is at the density maximum, provides a different way

of thinking about this sixfold symmetry. The ground-state
electron density of graphite is maximum at the center of a C
atom, each of which sits at a location with threefold local
symmetry. We expect that Fig. 6 will resemble the full
��x1 ,x2 , t�, for the specific case of x2 centered on a C site. In
accordance with the local environment, � should also exhibit
threefold symmetry.

There are, however, two distinct C atoms in a unit cell
with the same ground-state electron density. By Eq. �17�, the
averaged response in Fig. 6 should be a coherent superposi-
tion of sources at these two distinct C locations. Further,
though each C atom locally has only threefold symmetry, one
is rotated 60° from the other. When the two are superposed,
the sixfold symmetry in Fig. 6 results.

Our goal here is not to explain the existence of sixfold
symmetry in graphite, which was never a mystery. The point
is that Eq. �17� provides a useful, conceptual framework for
relating the spatially averaged response deduced from IXS
data to the complete, unaveraged response.

VI. DISCUSSION

It may be possible to extend IXS inversion methods to
image more than just an average response. Many years ago it
was shown12,13 that by setting up a standing wave in a ma-
terial, for example, by hitting a Bragg reflection, one can
measure a subclass of the off-diagonal components of the
susceptibility. Under standing-wave conditions, the initial
photon will be in a superposition of two different momentum
eigenstates, in which case the IXS cross section will contain
contributions from ��k1 ,k2 ,��, where k1�−k2. In principle
this method can be used to “anchor the problem” in space
and potentially reconstruct the complete ��x1 ,x2 , t�. Whether
it is experimentally possible to measure a sufficiently large
set of these off-diagonal terms is a subject of current inves-
tigation.

The reader should be aware that our method for inverting
IXS data works only for nonresonant inelastic x-ray scatter-
ing, i.e., in which the beam energy is kept far from any core
absorption edge. In this case the cross section is proportional
to S�k ,��, which is related to the propagator.9 For the case of
RIXS, in which the beam energy is tuned to an edge �in the
soft x-ray range, for example�, the scattering proceeds
through interference among a continuum intermediate states.
The RIXS cross-section explicitly depends on both the in-
coming and outgoing photon energies �and momenta�, rather
than just their difference.9 In this case the scattering cannot
be trivially related to any causal, response function, and ex-
plicit visualization of the dynamics is not possible. Various
scenarios for mapping the RIXS cross section onto a re-
sponse function, by integrating out the intermediate states,
have been proposed.14–16 If one of these approaches proves
viable, our method could be applied to RIXS as well.

The reader familiar with Compton scattering may wonder
whether there is a relationship between our ��x , t� and the
auxiliary function B�x� used in the Debye-Bessel method for
extracting a two-dimensional momentum-density profile
from a set of one-dimensional Compton scattering
measurements.17,18 The relationship, if any, is extremely in-
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FIG. 5. �Color online� ��x1 ,x2 , t� averaged over all source loca-
tions, x2. This is the image that would result by inverting IXS data.
Note the close similarity to Fig. 4�a�.

FIG. 6. �Color online� ��x ,y , t� for a real IXS experiment from
a single crystal of graphite. The sixfold symmetry is a result of the
underlying honeycomb symmetry of the graphene sheets. This im-
age can be thought of as a superposition of two sources, one on the
center of a C atom in each of the crystalline sublattices �see text�.
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direct. To begin, the quantity B is only definable in one-
electron band theory, where it is assumed the ground state is
a single Slater determinant of occupied, one-electron Bloch
states. The cross section is assumed to depend only on these
occupied levels, the recoiling electron having been treated as
a plane wave and mapped out of the problem. B is therefore
related to the one-electron Green’s function, and is more
closely related to one-electron probes, such as ARPES than it
is to standard IXS.

Like ��x , t�, B�x� is a function of only one spatial vari-
able. However it is not a spatial average. B�x� is actually an
autocorrelation or, more precisely, a coherent sum of the au-
tocorrelations of each of the individual, occupied Bloch lev-
els. An autocorrelation function is an extremely useful quan-
tity, particularly for uncovering hidden periodicities,19 and
has been exploited in algorithms to reconstruct Fermi sur-
faces from Compton data.17 However, the arguments we
make in this article do not apply to B in any obvious way.

In summary, we have shown that IXS imaging, as pre-
scribed in Ref. 6, provides images of the charge propagator,
��x1 ,x2 , t�, that are averaged over all source locations, x2.

No such average is done in time, however, so this method is
still a direct probe of electron dynamics in the attosecond
regime. The size of the propagator is much larger when x2
resides in a region of high density, so one can think of the
averaged images as corresponding to the complete response,
for x2 residing at the peak of the electron density. Standing
wave methods, in which the incident photon is placed in a
superposition of momenta, may extend the applicability of
the technique.
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